Tax Forecasting Based on Linear Discriminant Analysis-wavelet Support Vector Regression Algorithm
نویسنده
چکیده
Abstract The accurate prediction for future tax values is the key to make the reasonable tax collection policy. In order to improve the prediction accuracy of wavelet support vector regression, linear discriminant analysis-wavelet support vector regression algorithm is proposed to predict future tax values in the paper. In the linear discriminant analysis-wavelet support vector regression algorithm,the linear discriminant analysis(LDA) is used to optimize wavelet support vector regression algorithm. Tax data of China from 1978 to 2001 are used as our experimental data. The comparison of tax prediction values between the LDA-WSVR model and traditional WSVR model with the 3~7 input nodes respectively shows that the prediction results for future tax of LDA-WSVR are better than those of traditional WSVR.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملSupport Vector Machine and Least Square Support Vector Machine Stock Forecasting Models
This paper explores the Support Vector Machine and Least Square Support Vector Machine models in stock forecasting. Three prevailing forecasting techniques General Autoregressive Conditional Heteroskedasticity (GARCH), Support Vector Regression (SVR) and Least Square Support Vector Machine (LSSVM) are combined with the wavelet kernel to form three novel algorithms Wavelet-based GARCH (WL_GARCH)...
متن کاملA Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting
Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...
متن کاملPrediction of Stock Market Index Movement by Ten Data Mining Techniques
Ability to predict direction of stock/index price accurately is crucial for market dealers or investors to maximize their profits. Data mining techniques have been successfully shown to generate high forecasting accuracy of stock price movement. Nowadays, in stead of a single method, traders need to use various forecasting techniques to gain multiple signals and more information about the futur...
متن کاملShort Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011